Khái niệm (Logic học) – hình thức đặc biệt của tư tưởng.
1. Định nghĩa khái niệm
Thông thường người ta định nghĩa khái niệm là hình thức của tư duy trừu tượng, phản ánh một lớp các đối tượng (sự vật, quá trình và hiện tượng) thông qua các đặc trưng, các dấu hiệu cơ bản của các đối tượng đó. Trong trường hợp cần phân biệt rõ hơn khái niệm với các hình thức khác của tư duy cũng phản ánh đối tượng thông qua các đặc trưng cơ bản của nó – chẳng hạn như lý thuyết khoa học -, thì định nghĩa sau đây chính xác hơn:
Khái niệm là hình thức của tư duy trừu tượng, là kết quả của quá trình khái quát hóa và tách biệt (trong tư tưởng) các đối tượng thuộc về một lớp nào đó theo một số dấu hiệu đặc trưng nhất định của các đối tượng này.
Dấu hiệu – đó là cái làm cho ta so sánh được đối tượng này với đối tượng khác. Đó là sự hiện hữu hay thiếu vắng các tính chất nhất định nào đó ở đối tượng, hoặc là sự hiện hữu hay thiếu vắng quan hệ nào đó giữa đối tượng với các vật thể khác. Dấu hiệu mà đối tượng tất yếu phải có, không thể thiếu, gọi là dấu hiệu cơ bản. Dấu hiệu mà đối tượng có thể có, cũng có thể không có, gọi là dấu hiệu không cơ bản.
2. Kết cấu của khái niệm
Về mặt kết cấu, khái niệm gồm hai yếu tố là nội hàm và ngoại diên (còn gọi là ngoại diện).
Nội hàm là tập hợp tất cả các dấu hiệu làm cơ sở cho việc khái quát hóa và tách riêng ra thành một lớp các đối tượng phản ánh trong khái niệm. Như vậy nội hàm của khái niệm chính là tập hợp tất cả các dấu hiệu cơ bản của đối tượng được phản ánh trong khái niệm. Ví dụ, nội hàm của khái niệm “con người” là tập hợp các tính chất: động vật, biết chế tạo công cụ lao động và biết sử dụng công cụ lao động.
Ngoại diên của khái niệm là tập hợp tất cả các đối tượng có các dấu hiệu nêu trong nội hàm của khái niệm. Ví dụ, ngoại diên của khái niệm “số chẵn” là tập hợp vô hạn các số {0, 2, 4, 6, … }.
3. Khái niệm và từ
Khái niệm bao giờ cũng gắn với từ. Thế nhưng từ không phải là khái niệm. Thật vậy, cùng một từ như nhau nhưng có thể biểu thị những khái niệm khác nhau. Những khái niệm khác nhau cùng được thể hiện bằng một từ chính là cái mà ta vẫn gọi là những cách hiểu khác nhau về từ này. Chẳng hạn, từ “Niết bàn” có thể được hiểu như từ chỉ chốn cực lạc mà những người đắc đạo được đến ở, và cũng có thể được hiểu như là một trạng thái đặc biệt của linh hồn, của tâm linh. Ngược lại, nhiều từ khác nhau lại có thể được hiểu như nhau, nghĩa là biểu thị cùng một khái niệm.
4. Các loại khái niệm
Người ta có thể chia loại khái niệm theo những cơ sở khác nhau. Sau đây chúng ta xét một số kiểu chia loại quan trọng nhất.
a. Căn cứ vào nội hàm
Căn cứ vào nội hàm có thể chia khái niệm thành khái niệm cụ thể và khái niệm trừu tượng. Khái niệm phản ánh các đối tượng tồn tại độc lập gọi là khái niệm cụ thể. Ví dụ: “cái bàn”, “thành phố”, … Khái niệm nói về các đặc tính, tính chất của các đối tượng – những thứ không tồn tại độc lập -, còn bản thân các đối tượng thì được lãng quên, là khái niệm trừu tượng. Ví dụ: “lòng dũng cảm”, “cái đẹp”, …
b. Căn cứ vào dấu hiệu theo đó khái quát hóa
Căn cứ vào dấu hiệu mà ta dựa vào để khái quát hóa và tách biệt các đối tượng trong quá trình tạo nên khái niệm có thể chia khái niệm thành khái niệm khẳng định và khái niệm phủ định. Nếu dấu hiệu cơ sở hình thành khái niệm là sự hiện hữu của tính chất nào đó (hay quan hệ với đối tượng khác) của đối tượng thì khái niệm đó là khẳng định. Ví dụ, khái niệm “người anh hùng”, “trường điện từ”, … Nếu dấu hiệu cơ sở hình thành khái niệm là sự thiếu vắng của tính chất (hay quan hệ với đối tượng khác) nào đó của đối tượng thì khái niệm đó là khái niệm phủ định. Ví dụ, khái niệm “số nguyên tố”, “cặp đường thẳng song song” trong toán học.
c. Căn cứ vào ngoại diên của khái niệm.
Căn cứ vào ngoại diên khái niệm được chia thành khái niệm chung, khái niệm đơn nhất và khái niệm rỗng (còn gọi là khái niệm ảo, khái niệm giả). Khái niệm có ngoại diên chứa từ hai đối tượng trở lên gọi là khái niệm chung. Khái niệm mà ngoại diên chỉ gồm một đối tượng là khái niệm đơn nhất. Trong logic học truyền thống chỉ có hai loại khái niệm đã nói. Nhưng trong logic học hiện đại (còn gọi là logic toán) khi các phương pháp toán học được sử dụng rất rộng rãi thì có quan điểm tổng quát hơn. Ở đây xét đến cả các khái niệm mà ngoại diên là tập hợp rỗng, nghĩa là không chứa bất kỳ đối tượng nào. Ví dụ, “hình vuông tròn”, “số tự nhiên lớn nhất”, …
Căn cứ vào ngoại diên khái niệm còn có thể hiểu theo nghĩa tập hợp và theo nghĩa phân liệt. Khái niệm có ngoại diên chứa từ hai đối tượng trở lên nhưng lớp các đối tượng trong ngoại diên được suy nghĩ đến như một chỉnh thể thống nhất gọi là hiểu theo nghĩa tập hợp, hay ngắn gọn là khái niệm tập hợp. Khái niệm có ngoại diên chứa từ hai đối tượng trở lên và nội hàm của khái niệm có thể quy về cho từng đối tượng đó gọi là khái niệm phân liệt. Ví dụ, khái niệm “con người” có thể hiểu theo nghĩa tập hợp, lúc đó nó tương đương với khái niệm “loài người”, hoặc hiểu theo nghĩa phân liệt, khi đó nó không tương đương với khái niệm “loài người”.
5. Quan hệ giữa các khái niệm
Để biểu diễn quan hệ giữa các khái niệm được thuận tiện người ta dùng các hình tròn. Mỗi khái niệm được biểu thị bằng một hình tròn. Thực ra hình tròn biểu thị ngoại diên của khái niệm. Đối tượng trong hình tròn là đối tượng thuộc về ngoại diên của khái niệm, ngược lại, đối tượng ngoài hình tròn là đối tượng không thuộc về ngoại diên của khái niệm. Quan hệ giữa các hình tròn sẽ biểu thị quan hệ giữa các khái niệm.
a. Quan hệ so sánh được và không so sánh được
Các khái niệm thuộc về các lĩnh vực khác nhau gọi là các khái niệm không so sánh được. Trong các khái niệm đó không có dấu hiệu chung nào để có thể so sánh.
Các khái niệm có chung một số dấu hiệu nào đó, và nghĩa là về cùng một lĩnh vực nào đó, là các khái niệm so sánh được.
b. Quan hệ trùng lặp và không trùng lặp
* Quan hệ trùng lặp: Các khái niệm có quan hệ trùng lặp với nhau là các khái niệm có ngoại diên trùng nhau toàn bộ hoặc một phần. Quan hệ trùng lặp bao gồm các quan hệ đồng nhất, giao nhau và bao hàm.
- Quan hệ đồng nhất. Hai khái niệm đồng nhất khi chúng có cùng ngoại diên. Nội hàm của chúng khác nhau. Ví dụ: các khái niệm “số tự nhiên chia hết cho 3” và “số tự nhiên có tổng các chữ số chia hết cho 3” đồng nhất với
- Quan hệ giao nhau. Các khái niệm là giao nhau nếu ngoại diên của chúng có một phần trùng nhau. Ví dụ, các khái niệm “nhà văn” và khái niệm “nhà báo”.
- Quan hệ bao hàm. Hai khái niệm là bao hàm nhau nếu ngoại diên của khái niệm thứ nhất là một bộ phận của ngoại diên khái niệm thứ hai. Chẳng hạn, khái niệm “tam giác đều” được bao hàm trong khái niệm “tam giác”, khái niệm “người Việt Nam” được bao hàm trong khái niệm “con người”.
* Quan hệ không trùng lặp: Các khái niệm không trùng lặp là các khái niệm có ngoại diên không trùng nhau phần nào. Có ba loại quan hệ không trùng lặp là quan hệ đồng phụ thuộc, quan hệ tương phản và quan hệ mâu thuẫn.
Ngang hàng. Hai khái niệm gọi là ngang hàng khi chúng có quan hệ không trùng lặp và có một khái niệm thứ ba mà cả hai khái niệm đó cùng phụ thuộc. Ví dụ, các khái niệm “người dân tộc Dao” và “người dân tộc Êđê” cùng được bao hàm trong khái niệm “người Việt Nam” nên là các khái niệm ngang hàng.
Quan hệ đối lập (còn gọi là tương phản). Hai khái niệm là đối lập nhau nếu: chúng cùng được bao hàm trong một khái niệm thứ ba; tổng ngoại diên của chúng nhỏ hơn ngoại diên khái niệm thứ ba đã nói; nội hàm của khái niệm thứ nhất gồm các dấu hiệu p1, p2, …, pn với n là số tự nhiên, n ³ 1; nội hàm của khái niệm thứ hai cũng gồm các dấu hiệu này, nhưng một dấu hiệu nào đó trong số chúng, chẳng hạn pi,, được thay thế bởi dấu hiệu đối lập với nó. Ví dụ, các khái niệm “sinh viên giỏi” và “sinh viên kém” là các khái niệm đối lập với nhau. Ta thấy cả hai khái niệm này đều được bao hàm trong khái niệm “sinh viên”, nhưng tổng ngoại diên của chúng nhỏ hơn ngoại diên khái niệm “sinh viên” vì ngoài sinh viên giỏi và sinh viên kém còn có sinh viên khá, sinh viên trung bình, …. Nội hàm của khái niệm “sinh viên kém” chỉ khác nội hàm của khái niệm “sinh viên giỏi” ở chỗ tính chất “giỏi” được thay thế bằng tính chất đối lập với nó là tính chất “kém”.
Quan hệ mâu thuẫn. Hai khái niệm có quan hệ mâu thuẫn với nhau nếu: chúng cùng được bao hàm trong một khái niệm thứ ba; tổng ngoại diên của chúng vừa bằng ngoại diên khái niệm thứ ba; nếu nội hàm của khái niệm thứ nhất gồm các dấu hiệu p1, p2, …, pi-1, pi, pi+1, …, pn , thì nội hàm của khái niệm thứ hai là p1, p2, …, pi-1, pi +1, …, pn, với i ³ 1. Ví dụ: “cái bàn cao” và “cái bàn không cao”, “sinh viên giỏi” và “sinh viên không giỏi”.
Quan hệ giữa các khái niệm đã trình bày trên đây có thể biểu diễn thông qua các sơ đồ:
(Nguồn tài liệu: Phạm Đình Nghiêm, Nhập môn logic học)